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Abstract---Given the magnitudes and orientations of the principal stresses, the normal and shear components of 
stress acting on a plane of arbitrary orientation are determined either graphically or with the aid of a novel type of 
vector product. The normal stress or, due to the action of a stress vector ¢r on a plane of pole n is the star product 
n*~, which is defined as a vector oriented parallel to n with magnitude equal to the dot product n .  ¢ .  The shear 
stress vector ~s is given by the vector difference or - ¢rn. In the case of a deformation, given the magnitudes and 
orientations of the principal stretches, the shear strain of an arbitrary line is determined by a related, but 
significantly different, procedure. 

INTRODUCTION 

LISLE (1989), Means (1989) and Ragan (1990, this issue) 
draw attention to the problem of determining shear 
stress ors on a plane of pole n in a general orientation, 
given the magnitudes and orientations of the principal 
stresses, orb or2 and or3. Lisle obtains the direction of 
shear stress from a construction involving the circular 
sections of an ellipsoid related to the stress ellipsoid. 
Means's construction involves rotation of directional 
data on a stereonet followed by numerical computation; 
it yields additional information, namely the magnitude 
of the shear stress, in addition to its direction. In both 
cases, about as much calculation is required for setting 
up the construction as is involved in a classical algebraic 
solution of the problem as reviewed by Ragan (1990, this 
issue). The constructions are intended to give students 
an additional understanding of spatial relations. Stu- 
dents vary in their preference for graphical vs algebraic 
treatments and are advised to use whichever solution 
they find the most intuitive. In this paper, I present an 
alternative approach which yields the magnitudes, 
trends and plunges of the stress vector and its normal 
and shear components, using either an orientation net or 
a simple computer/pocket-calculator program. The 
approach adopted here highlights intrinsic differences 
between the analysis of shear stress (Zizicas 1955) and 
shear strain (Treagus 1986), for which different methods 
of derivation are necessary. It also overcomes problems 
that arise in previously published techniques when one 
or more principal stress magnitude is zero or negative. 

Ragan (1990, this issue) has divided the problem into 
two cases; the special case where the principal stress 
vectors are in the directions of the chosen reference 

axes, and the general case where they are oblique. In the 
following discussion, the special case is treated graphi- 
cally and the general ease algebraically. 

SHEAR STRAIN VS SHEAR STRESS 

Figure l(a) shows a unit sphere and a surface normal, 
n, extending from the tip of an arbitrarily chosen radius. 
In Fig. l(b) the ellipsoid with principal axes Sl, $2 and $3 
is taken to represent an irrotational deformation of the 
unit sphere. The length of the chosen radius represents 
the stretch S of the initial direction n, and the deflection 
of the deformed direction n' from the ellipsoid's surface 
normal n" represents the amount of shear strain. A deck 
of cards stacked on top of the sphere at n would be 
rotated during deformation and simultaneously sheared 
through the angle n'An"; the shear direction is measured 
from n" towards n' and it is generally oblique to all three 
principal planes. 

In contrast to Fig. l(a), the sphere in Fig. l(c) rep- 
resents the set of poles to planes of all possible orien- 
tations and the ellipsoid of Fig. l(d) represents a state of 
triaxial stress with principal stresses or~, or2 and or3. The 
same radius, relabelled or, now represents the stress 
vector acting on the plane of pole n. The stress ellipsoid's 
tangent plane at the radius or is not shown because it is 
the plane of conjugate stresses and is not related to the 
plane of pole n on which or acts (the plane illustrated in 
Fig. lc). The components of or resolved perpendicular 
and parallel to the plane on which it acts are the normal 
and shear stress components, orn and ors. Thus, shear 
stress and shear strain differ both in magnitude and 
direction even when the stress and strain states are 
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(a) 

diagram. This is achieved on the orthographic orien- 
tation net of Fig. 2(a). Three principal sections of the 
stress ellipsoid are constructed representing an archi- 
tect's plan, side and elevation view (see inset). Because 
of symmetry, it is sufficient to represent only one quad- 
rant of each section and two sections suffice in practice; 
the third is added for the sake of clarity but is not used in 
the following construction. The quadrants of the princi- 
pal elliptical sections are constructed on an overlay by 
marking 0"t along the net's North axis and then drawing 
0, 2 and 0"3 to scale along the East and Down directions. 
For example, let 0"x = 10 MPa, 0"2 = 5 MPa, 0"3 = 3 MPa 
(MPa = MegaPascais), and let the orientation net have a 
radius of 10 cm (as in De Paor 1983). Then 0"t, 0,2 and 0,3 
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Fig. I. (a) Unit reference sphere with arbitrary surface normal labelled 
n. (b) Strain ellipsoid with deformed surface normal labelled n" and 
radius vector S (extended along line n').  Principal stretches are 
labelled $1, S2, $3. (c) Unit reference sphere with pole to arbitrary 
tangent plane marked n. (d) Stress ellipsoid with principal stresses 
labelled ~l ,  °'2, (r3. The stress acting on the plane in (¢) is labelled ~. 

Its line of action is n'. 

represented by identical ellipsoids; similarly, normal 
stress and longitudinal strain are two entirely different 
quantities. A problem arises in visualizing the stress 
components because the stress vector and the plane on 
which it acts do not appear in the same figure. 

GRAPHICAL ANALYSIS OF STRESS 

To facilitate graphical determination of normal and 
shear stress components it is necessary to transfer the 
stress vector and the plane on which it acts onto one 

N 

t 
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Fig. 2. (a) Graphical construction for representing the three principal 
sections of the stress ellipsoid when it is oriented parallel to the 
reference directions. A perspective view is inset. The three points 
labelled n are three different projections of the pole to a chosen plane. 
See text for explanation. (b) Construction for determining the total 
stress ~t acting on the plane of pole n. Black dots mark the orientation 
n'  of ~t in each quadrant. (c) Graphical resolution of total stress fit into 
normal and shear components, f t ,  and cq. A great circle is constructed 
through the directions n' and n and extended to intersect the plane of 
pole n. The parallelogram rule is used to determine normal and shear 
stress magnitudes projected in the directions indicated by the black 

dots. 
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are represented by lines 10, 5 and 3 cm long, respect- 
ively. Elliptical great circles of the orientation net serve 
to guide the drawing of two elliptical traces (the 0.2 - 0.3 
elliptical trace may be added freehand as it is not used in 
the construction). The pole n is plotted at, say, (trend = 
060 °, plunge = 45 °) in the North-East  quadrant,  then 
transferred 90 ° along a small circle to the equivalent 
Nor th-Down projection. The stress vector acting on the 
plane of pole n is found using the construction in Fig. 
2(b), as follows: using both the North-East  and Nor th-  
Down quadrants, trace the direction of  n radially out to 
the perimeter of the net, along a small circle to the stress 
ellipse, and then radially in to the small circle you started 
on. This yields two  projected views of the total stress 
vector 0.t whose tip is located in the interior space of the 
reference sphere at Cartesian co-ordinates {3.4N, 2.6E, 
2D} (on a 10 cm net). To find the point where this vector 
pierces the sphere (its "orientation point", De Paor 
1979), use the dotted construction lines in Fig. 2(b) as 
follows: extend the lines of the two projections of 0.t 
until two points are found to lie 90 ° apart on a common 
small circle. These points are the only two that represent 
the stress vector's orientation compatibly in the two 
quadrants. Since they represent the same direction, they 
are both labelled n' and the trend and plunge is 
measured as {002 ° , 24 ° } in the North-East  quadrant. 
The stress magnitude is given by the ratio of the distance 
from the center of the net to points 0.t and n' (4.7 cm/9.1 
cm yields 0.52 times 10 MPa, or 5.2 MPa in this 
example). Finally, o't may be resolved into normal and 
shear components,  0., and 0.s, using the parallelogram 
law as in Fig. 2(c), which gives 

0.t = (5.2 MPa (=4.7 cm/9.1 cm), 042 °, 24 °} 

0., = (4.6 MPa (=3.2 cm/7 cm), 060 °, 45*} 

o's = (2.2 MPa (=1.9 cm/8.6 cm), 188 °, 32*}. 

The above construction works even when one or more 
principal stress is of zero magnitude. When a principal 
stress is negative, the geographical labels must be 
adjusted. For example, if the N-S directed stress 0.1 is 
negative (tensile) but larger in magnitude than 0"2 and 0"3 
which are positive (compressive), the stress vector is 
interpreted to lie in the South-East  quadrant when the 
plane's pole n lies in the North-East  quadrant(and vice 
versa: similarly for other cases). Note that, contrary to 
textbook wisdom, the stress state is represented by an 
ellipsoid even when the principal stresses differ in sign 
(De Paor 1981, 1983). 

THE STAR PRODUCT 

Whilst Figs. 1 and 2 may help one to understand the 
problem an algebraic solution using a micro-computer 
or pocket-calculator is more efficient, especially if the 
principal stresses are oblique to the reference axes. In 
order to simplify the algebraic presentation a novel type 
of vector product is employed. Most students are fam- 
iliar with the two basic methods of multiplying two 

Fig. 3. (a) General case of a stress ellipsoid oriented oblique to the 
reference axes. The data chosen for the numerical example in the text 
is shown in (magnitude, trend, plunge) format. (b) Graphical illus- 

tration of the star products in equation (1). See text for details. 

vectors (say a = (1, 2, 3} and b = {4, 5, 6}), namely the 
dot product a- b and the cross product a x b. A vector 
product, called the "star product" a*b is here defined as 
a v e c t o r  parallel to a with a magnitude equal to the dot 
product a-  b. Since a .  b = (1)(4) + (2)(5) + (3)(6) = 32, 
a*b = (8.6, 17.2, 25.8} in this case. Familiarity with the 
star product may take some practice, but it is worthwhile 
as it obviates the need to introduce tensor algebra in the 
general derivations that follow. 

ALGEBRAIC ANALYSIS OF STRESS 

Given the principal stresses 0.1, 0"2 and er a of (Fig. 3a), 
the simplest mathematical representation of the total 
stress 0.t on a plane of pole n is 

0.t = O'l*n ÷ 0"2 *n + ° '3*n" (1) 

(Note that 0.1, 0.2, and 0.3 are n o t  oriented along the 
reference axes. Each is a vector with three non-zero  
components.)  The form of equation (1) highlights the 
fact that each principal stress contributes to the total 
stress a vector component  oriented along the principal 
direction (Fig. 3b) with a magnitude decreased by a 
factor that depends on its obliquity to the plane's pole n. 
Each star product is represented by a side of the rectilin- 
ear box in Fig. 3(b). The vector sum, 0.t is given by the 
leading diagonal of the box (not shown), which extends 
from the center to the surface of the stress ellipsoid. The 
normal component  of stress 0", is given by projecting the 
stress vector 0.t onto the direction of the normal vector 
n. Since n is of unit magnitude, one may write 

0.. = n*0.t. (2) 

The shear component  is simply the vector difference, 
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o" s = o" t - o% (3) 

For the data of Fig. 3(a), the first step is to convert 
from polar (length, trend, plunge) co-ordinates to Car- 
tesian {North, East, Down} co-ordinates, 

n = (1,060*, 45 °) = {0.35N, 0.61E, 0.70D} 

cq = (10,020 °, 30*) = {8.14N, 2.96E, 0.70D} 

(r2 = (5,165", 55*) = ( -2 .77N,  0.74E, 4.10D} 

tr 3 = (3,280°, 17") = {0.50N, -2.82E,  0.88D}. 

Then the star products are calculated 

eq*n = {6.70N, 2.44E, 4.11D} = (8.23,020 °, 30 °) 

~r2*n = {-1.31N, 0.35E, 1.94D} = (2.37,165 °, 55 °) 

era*n = {-0.16N, 0.88E, -0.27D} = (0.93,280 °, 17 °) 

and their vector sum is obtained simply by adding 
Cartesian coefficients, 

cr t = {5.23N, 3.67E, 5.78D} = (8.62, 035 °, 42°). 

A BASIC micro-computer program to solve 
equations (1)-(3) is presented in the Appendix. In 
addition to solving these equations, the code deals with 
the conversion of data from the (magnitude, trend*, 
plunge*) format used in structural geology to the 
{North, East, Down} Cartesian co-ordinate format of 
vector algebra, and vice versa. The actual algorithm for 
solving the equations occupies only a small block of code 
and may be readily adapted for pocket-calculator use. 

G R A P H I C A L  A N A L Y S I S  OF S H E A R  S T R A I N  

The case of strain differs from that of stress as illus- 
trated in Fig. 1 (see also Treagus 1986). However, the 
stretch of a line is directly equivalent to the total stress 
vector and does not require a separate treatment. Fur- 
thermore, it is a simple matter to determine shear strain 
by adapting previous constructions for the special case 
where ellipsoid axes parallel reference axes (Fig. 4). Let 
(t, p) be the trend and plunge of an arbitrary line n. Since 
we are not concerned with longitudinal strains, the 
construction in Fig. 2(b) may be short-circuited to yield 
only the direction (t', p ')  of the deformed line n'. Using 
both the North-East and North-Down quadrants, one 
simply traces zig-zag paths as in Fig. 2(b) radially out to 
the perimeter, in to the strain ellipses, and then out to 
points n' with trend and plunge (t', p ')  that are 90* apart 
on a common small circle. 

March (1932) demonstrated that when a plane under- 
goes deformation its pole behaves as if it were a line 
undergoing reverse deformation. Therefore, to locate 
the pole to the deformed plane whose initial pole was n, 
one must reverse the construction of Fig. 2(b). That is, 
one traces radially in from n to the ellipse, out along a 
small circle to the perimeter, and radially back to two 
equivalent points (t", p") separated by 90 ° along a small 
circle in the North-East and North-Down quadrants. 
These represent the pole n" = (t", p"). The angular shear 
~p of the initial line n is the angle between n' and n" (note 

that n, n' and n" are not generally coplanar). ~p can be 
measured using the standard orientation net method or 
the dot product method (below) and its tangent deter- 
mined to yield the required shear strain y. 

Often in structural geology, one knows the final 
orientation of a line, not its initial orientation. In that 
event, n' is given and the reverse deformation construc- 
tion is applied twice to yield first n and then n". 

A L G E B R A I C  A N A L Y S E S  OF S H E A R  S T R A I N  

Again it is simplest to solve the problem algebraically, 
especially when the principal directions are not parallel 
to the reference axes. Given the principal stretch vectors 
Sl, $2, $3 and the initial pole n with trend t and plunge p, 
these four vectors are first converted from polar to 
Cartesian co-ordinates and then substituted in equation 
(1) to yield the stretch vector S, 

S = St*n + S2*n + S3*n. (4) 

Converting S back to polar co-ordinates (S, t', p ')  gives 
its orientation point n'. Let reciprocal principal stretch 
vectors S~, S~, S~, be parallel to the principal stretches 
Sl, S2, $3, but have inverse magnitudes 1/$1, 11S2, 1/$3. 
Then the reciprocal stretch vector S' is given by 

t~ S' = Si*n + S'2*n + $3 n. (5) 

Its trend and plunge (t", p"), is the same as that of pole n" 
in Fig. l(b). The angle between vectors n' and n" is given 
by the standard dot product method, that is, cos ~p = 
S. S'/IS][S' I. ~p is the required angular shear. 

As stated in the previous section, the deformed direc- 
tion of a line is more commonly known in structural 
geology. Since the graphical construction involved a 
double application of the reverse deformation, the 
equivalent algebraic solution is to substitute vectors kl, 
k-~, k~ into equation (1), where each k'  = 1/S 2, 

k' = ki*n' + k~*n' + kA*n'. (6) 

Si 

Fig. 4. Construction for shear strain (Nor th-Eas t  quadrant  shown; 
Nor th -Down quadrant  is similar). Given a line n with initial t rend t and 
plunge p, its deformed direction n '  = (t ' ,  p ' )  is located as in Fig. 2(b). 
The point n" = (t ' ,  p') is located by reversing the procedure~--it 
represents the pole to a plane that was perpendicular to n before 
deformation. The angle between n" and n'  represents the angular shear 

¢, of the initial line n or final line n ' .  
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Again ,  the t rend and plunge of  k '  give the direct ion o f  
pole n" and the angular  shear ,  p = n ' A n " ,  may  be 

ob ta ined  using the dot  product .  

C O N C L U S I O N S  

The  graphical construct ions  presented  here may  
appear  difficult due to lack of  familiarity, but  they are as 
easy to master  as the three-dimensional  M o h r  circle 
const ruct ions  which give the same results. T he  algebraic 
derivat ion presented  here  averts the need  to in t roduce 
strain tensors by employing  a simple vec tor  product ,  
a*b. Of  course,  the simplicity of  equat ions  (1)-(6)  is of  
benefit  only if t h e y  can be solved in practice.  T o  that  
end,  a compu te r  code is included for  the solution of  

equat ions  (1)-(6) .  
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A P P E N D I X  

BASIC Compew Algorithms. 
Pi,.ATN(I)<<2 
Radkm-Pi/180 

I~R j-I TO 3 

~O.i)~a(2,i).~.i)-m c.~'mSL~O,'rhm,Ptu') 

R~),.R 
~mx-r j 

INPUT "rm~l,plun~ ~ pole'; Them, Phi 
n(1),n(2),nO)=FN CAR'rr~ IAN( 1 ,Them,Fhi) 

FOR i=l TO 3,j=l TO 3, k=l TO 3 
S Ki).S t0-)+D(i,D, n(k)*pt~ '~n (I) 

NEXT k. j, i 

FOR i=l "I'O 3 

Ss0)=St(resn(i) 'eqa (3) 
S(i)mSt(i) ' ~  (4) 

NEXT i 

FOR j-I TO 3j,-1 TO 3 

s(ij')=D(ij')/R~ 
l(ij)-D(ij)/R0y'2 ~ qe~tm~ 

ENDI~ 
NEXT i.j 

FOR i,.1 TO 3,j~l TO 3, b l  TO 3 
~)~(~D(ij3*n00*~,D 'eqa 03 
l(i)=l(i~-D(i j)* aOc)*l(k~ 'eqn(~ 

N~X'r ~ j . i  

INPUT "r~.mu op~ioa';Dmp/pe$ 

Sln.ecr C~,~ ,S 
CAS~ "sm~ on plane" 

FN POLAR CTotal m=m',St(1)3t(2)3t(3)) 
FN POLAR CNocnud stress'3a(l),Sn(2)3n(3)) 

POLAR CShe~ sa~.ss'3s(l).Ss(2),Ss(3)) 
CASE "she~ of initial line" 

PRINT "Ant, ul~ she~ of inidal line n=': 
F~ A~OL~.(S(Z)3(2),S(3)J(Z)J(2)a(3)) 

CASE "tlmar of fuml liae* 
FRINT "Anllular she~ ~ final line "'='; 
F~ AbrOI.F.0(~ )J(2)J(3),n(~)~(2) J~(3)) 

END SEI.ECT 

END 

ARCTA~(y 
IFx-0 

Xr:LSE 
Thmt-A'rN(AeS(y/x))*~ 
IF x~0 THEN Them.. 180-Thu~ 

m~r/) IF 
ip y,:0 THEN Tt~a=360-Ttaa 

Pbi-FN ARCSlN(x.y.z) 
IF z<0 
x~-x 
y--y 

ENDIF 
ARCTAN(z, SQR(1-~)) 

Psb.FN ARC'COS(z) 
~i , ,~  ARC'[',A.N(~RO -zA2).z) 

x..v.z.~ CAR're.SL,d~(R,Them.Ptd) 
'lbem-Them*RadJms 
Ptb,l~'Radims 
x,.R*COS(Tlzmy'COS(m) 
y,.R*SIN(Ibeta)*COS(Phi) 
z,,~"S1N(PIu') 

FAqD lq4 

FN FOLAR(T'~,y,z) 

IPR>0 
x=x/R 
y=yjR 

Phi=~ ARCSIN(xJ,,z) 
T t ~ = ~  ARCTAN(y~) 

XF.LSE 
Fai-0 
Tlmm=0 

mqDIF 
PRINT Tid~R,TlmmJqli 

ENDFN 

~W Ab~Lr~A( I)AC~AO)~(I),SO),SO)) 

• 

A q m ~ m = ~  
Psi-FN ARCCOS(Aq~a0 
PRIIqT Psi 
ENDFN 


